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The nonlinear regime of low-temperature magnetoresistance of double quantum wells in the region of
magnetic fields below 1 T is studied both experimentally and theoretically. The observed inversion of the
magnetointersubband oscillation peaks with increasing electric current and splitting of these peaks are de-
scribed by the theory based on the kinetic equation for the isotropic nonequilibrium part of electron distribution
function. The inelastic-scattering time of electrons is determined from the current dependence of the inversion
field.
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I. INTRODUCTION

The nonlinear transport in two-dimensional �2D� electron
systems placed in a perpendicular magnetic field has been
extensively studied in the past in connection with the break-
down of the quantum Hall effect at high current densities.1

More recently, it was realized that the resistivity is substan-
tially modified by the electric current in the region of weak
magnetic fields and relatively high temperatures, when the
Landau levels are thermally mixed, so the quantum Hall ef-
fect does not occur and even the Shubnikov-de Haas oscilla-
tions �SdHOs� are suppressed. The basic reason for high sen-
sitivity of the resistance to the current is the Landau
quantization, which becomes essential in high-mobility sys-
tems at the magnetic fields on the order of 0.1 T. In such
systems, an electric current generates a substantial Hall field
perpendicular to the current flow. In the presence of this
field, scattering-assisted transitions of electrons between dif-
ferent Landau levels become possible, which leads to modi-
fications of the resistivity.

The present interest in the static �dc� nonlinear transport
in 2D systems is stimulated by the observation of two impor-
tant phenomena. First, there appear oscillations of the resis-
tance as a function of either magnetic field or electric
current.2–4 Second, the current substantially reduces the re-
sistance even at moderate applied voltages.3,5,6 The oscillat-
ing behavior is a consequence of the geometric resonance in
the electron transitions between the tilted Landau levels
when the diameter of the cyclotron orbit becomes commen-
surable with the spatial modulation of the density of
states.2,3,7 The decrease in the resistance is governed by
modification of electron diffusion in the energy space, which
leads to the oscillating nonequilibrium contribution to the
distribution function of electrons.8 A theory describing both
these phenomena in a unified way9,10 shows that the exis-
tence of the oscillations requires the presence of a short-
range scattering potential to enable efficient backscattering.
The decrease in the resistance, in contrast, occurs for an ar-
bitrary scattering potential. Experimental investigations of
this phenomenon5,6 strongly support the theory8–10 predicting
nontrivial changes in the distribution function as a result of
dc excitation under magnetic fields. Nevertheless, further

studies are necessary for better understanding of the physical
mechanisms of this nonlinear behavior.

In this paper, we investigate nonlinear magnetotransport
in double quantum wells �DQWs�, which are representative
for the systems with two closely spaced occupied 2D sub-
bands. In contrast to the quantum wells with a single occu-
pied subband, the positive magnetoresistance, which appears
owing to the Landau quantization,11 is modulated in DQWs
by the magnetointersubband �MIS� oscillations.12 These os-
cillations, whose maxima correspond to integer ratios of the
subband splitting energy �12 to the cyclotron energy ��c, are
caused by periodic variation in the probability of elastic in-
tersubband scattering of electrons by the magnetic field as
the density of electron states oscillates with energy. Owing to
this property, the changes in the quantum contribution to the
resistivity are directly seen from the corresponding changes
in the MIS oscillation amplitudes. In particular, we observe a
remarkable manifestation of nonlinearity in DQWs, the in-
version of the MIS oscillation picture, which appears when
the quantum magnetoresistance changes from positive to
negative with increasing current �Fig. 1�. In addition, we
observe a splitting of the MIS oscillation peaks in the region

FIG. 1. �Color online� Magnetoresistance of sample A for three
different currents I at T=1.4 K. The oscillations are inverted with
the increase in the current. The inset shows the linear and the non-
linear �at I=200 �A� magnetoresistance in the low-field region.
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of fields above the inversion point. By adopting basic ideas
of the theory,8 we explain our experimental data and deter-
mine the inelastic relaxation time of electrons in our
samples.

The paper is organized as follows. In Sec. II we describe
the experimental details and present the results of our mea-
surements. In Sec. III we generalize the theory of Ref. 8 to
the case of two-subband occupation. A discussion, including
a comparison of experimental results with the results of our
calculations, is given in Sec. IV. The last section contains the
concluding remarks.

II. EXPERIMENT

The samples are symmetrically doped GaAs double quan-
tum wells with equal widths dW=14 nm separated by
AlxGa1−xAs barriers with widths db=1.4, 2, and 3.1 nm. Both
layers are shunted by Ohmic contacts. Over a dozen speci-
mens of both the Hall bars and the van der Pauw geometries
from three wafers have been investigated. We have studied
the dependence of the resistance of symmetric balanced
GaAs DQWs on the magnetic field B at different applied
voltages and temperatures. While similar results have been
obtained for all samples with different configurations and
barrier widths, we focus on measurements performed on two
samples with barrier width db=1.4 nm. The samples are Hall
bars of width 200 �m and length 500 �m between the volt-
age probes. The mobilities are 9.75�105 cm2 /V s �sample
A� and 4.0�105 cm2 /V s �sample B�, and the total electron
density ns=1.01�1012 cm−2 is the same for both samples.
The resistance R=Rxx was measured by using the standard
low-frequency lock-in technique for a low value of the cur-
rent. We also use dc current, especially for high-current mea-
surements. The results obtained with ac and dc techniques
are similar. The subband separation �12, found from the MIS
oscillation periodicity at low B, is 3.7 meV for sample A and
5.1 meV for sample B.

The resistance of sample A as a function of magnetic field
at different temperatures and currents is presented in Figs. 1
and 2. At weak currents, the magnetoresistance is positive

and modulated by the large-period MIS oscillations clearly
visible above B=0.1 T. The small-period SdHOs, superim-
posed on the MIS oscillation pattern, appear at higher fields
in the low-temperature measurements �Fig. 1�. With increas-
ing current I, the amplitudes of the MIS oscillations de-
crease, until a flip of the MIS oscillation picture occurs. This
flip, associated with inversion of the quantum part of the
magnetoresistance from positive to negative, starts from the
region of lower fields and extends to higher fields as the
current increases. Therefore, one can introduce a current-
dependent inversion field Binv. The inset to Fig. 2 shows the
behavior of the magnetoresistance near the point of inver-
sion, where we observe an additional feature that looks like
splitting of the MIS oscillation peaks or appearance of the
next harmonics of the MIS oscillations. This feature persists
in higher magnetic fields. In contrast to the MIS oscillations,
the SdHOs are not inverted. However, owing to electron
heating by the current, the SdHO amplitudes decrease as the
current increases until the SdHOs completely disappear in
the low-field region.

The amplitudes of inverted MIS oscillations increase with
increasing current and become larger than the MIS oscilla-
tion amplitudes in the linear regime. At low temperatures the
ratio of the corresponding amplitudes varies between 2 and
3; see Fig. 1. However, when the current increases further,
the amplitudes of inverted peaks slowly decrease; this de-
crease is faster in the region of lower magnetic fields. This
property is seen in Figs. 3 and 4, where the magnetoresis-
tance data for sample B are presented. The typical current
dependence of the inverted peak amplitudes at T=1.4 K is
shown in the inset to Fig. 3. The behavior of magnetoresis-
tance at 4.2 K, shown in Fig. 4, is similar. In the chosen
interval of magnetic fields, the SdHOs at 4.2 K are sup-
pressed even in the linear regime. The splitting of the MIS
oscillation peaks is clearly visible in Fig. 4 at I=80 �A. For
I=100 �A this splitting apparently develops in the fre-
quency doubling of the MIS oscillations. Further increase in
the current suppresses this feature, leading to a simpler pic-
ture of inverted MIS oscillations.

FIG. 2. �Color online� Magnetoresistance of sample A for dif-
ferent currents at T=4.2 K. The inset shows inversion of the quan-
tum magnetoresistance around B=0.2 T.

FIG. 3. �Color online� Magnetoresistance of sample B at T
=1.4 K. The values of the current are 10 �bold curve�, 30, 50
�dashed curve�, 100 �bold dashed curve�, 150, 200 �short dashed
curve�, and 300 �bold curve� �A. The inset shows amplitudes of the
inverted peaks at B=0.34 T.
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III. THEORY

The theoretical interpretation of our data is based on the
physical model of Dmitriev et al.,8 generalized in this section
to the two-subband case. According to the theory, the main
influence of the current on the dissipative conductivity �d is
associated with changes in the isotropic part of electron dis-
tribution function f�, whose first derivative enters the expres-
sion for conductivity,

�d =� d��−
� f�

��
��d��� . �1�

The quantity �d��� describes the contribution from electrons
with a fixed energy � and is proportional to the squared
density of electron states. When the current flows through the
sample, it effectively causes a diffusion of electrons in the
energy space. This is reflected by the kinetic equation

P

D��d

�

��
�d���

�

��
f� = − J��f� , �2�

where P= j2	d is the power of Joule heating �the energy ab-
sorbed per unit time over a unit square of electron system�, j
is the current density, 	d is the resistivity, D� is the density of
electron states, and J� is the collision integral. The spectral
diffusion is strongest near the centers of the Landau levels,
where the density of states, and so �d���, is maximal and
leads to a “flattening” of the distribution function there.6,8

This means that −�f� /�� becomes smaller compared to the
case of equilibrium Fermi distribution in the regions of maxi-
mal density of states. Since these regions give the main con-
tribution to conductivity �1�, the latter decreases with in-
creasing current. In the classically strong magnetic fields, the
resistivity is proportional to the conductivity and behaves in
the same way.

Having described the basic idea, in the rest of this section,
we give the details of the theoretical formalism in the appli-
cation to the two-subband systems. First of all, to ensure that
the nonequilibrium distribution function f� is subband inde-
pendent �common for both subbands�, we assume that the
intersubband elastic scattering is much stronger than the in-
elastic scattering. In symmetric �balanced� DQWs, where the
probability of intersubband scattering is close to that of in-
trasubband scattering, this requirement is easily satisfied. To
find D� and �d��� in the magnetic field B, we choose the
vector potential as �0,Bx ,0� and describe the free-electron
states by the quantum numbers j, n, and py, where j=1,2
numbers the electron subband of the quantum well, n is the
Landau-level number, and py is the continuous momentum.
In this basis,

�d��� =
e2

2
m
Re�Q�

AR − Q�
AA� , �3�

Q�
ss� =

2�c

L2 �
nn�

�
j j�

	�n + 1��n� + 1� �
pypy�

�

G�
j j�,s�n + 1py,n� + 1py��G�

j�j,s��n�py�,npy��� ,

�4�

where e is the electron charge, m is the effective mass of

electron, G�
j j�,s are the retarded �s=R� and the advanced �s

=A� Green’s functions, and L2 is the normalization square.
The Zeeman splitting is neglected, so the electrons are as-
sumed to be spin degenerate. The double angular brackets in
Eq. �4� denote averaging over the random potential. In terms
of the Green’s functions, the density of states is given by

D� =
2


L2 �
jnpy

Im

G�
j j,A�npy,npy��� =

2m


�2�
j

Im Sj�.

�5�

The dimensionless function Sj� is found from the implicit
equation

Sj� =
��c

2

�

n

1

� − ��c�n + 1/2� − � j − � j�
,

� j� = �
j�

�

� j j�
Sj��, �6�

where �c is the cyclotron energy, � j is the subband energy,
and � j j� are the quantum lifetimes of electrons with respect to
intrasubband �j�= j� and intersubband �j�� j� scatterings.
Equation �6� is valid when the correlation length of the dis-
order potential is smaller than the magnetic length, and the
disorder-induced energy broadening of the subbands is
smaller than the subband separation �12=�2−�1. It corre-
sponds to the self-consistent Born approximation �SCBA�.

Below, we consider the case of a classically strong mag-
netic field, �c�tr1, when �d��� is written in terms of Sj� as

FIG. 4. �Color online� Magnetoresistance of sample B at T
=4.2 K. The values of the current ��A� are 1, 50, 80, 100, 120, and
150 for the curves marked by the numbers from 1 to 6, respectively.
The other curves correspond to the currents of 200 �short dashed
curve�, 250 �bold dashed curve� 300 �solid curve�, 350 �dashed
curve�, and 400 �bold curve� �A.
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�d��� =
4e2

m�c
2� n1

�11
tr �Im S1��2 +

n2

�22
tr �Im S2��2

+
ns

�12
tr Im S1� Im S2� , �7�

where n1 and n2 are the electron densities in the subbands,
ns=n1+n2, and � j j�

tr are the transport times of electrons. Both
� j j� and � j j�

tr are determined by the expressions

�1/� j j�

1/� j j�
tr � =

m

�3�
0

2
 d�

2

wjj��	�kj

2 + kj�
2 �Fjj����� �� 1

Fjj���� � ,

�8�

where wjj��q� are the Fourier transforms of the correlators of
the scattering potential, Fjj����=1−2kjkj� cos � / �kj

2+kj�
2 �,

and kj is the Fermi wave number for the subband j. The
electron densities in the subbands are expressed as nj
=kj

2 /2
.
In DQWs, where the energy separation between the sub-

bands is usually small compared to the Fermi energy, the
difference k1

2−k2
2 is small in comparison with k1

2+k2
2, so that

n1�n2�ns /2. Furthermore, in the balanced DQWs, where
the electron wave functions are delocalized over the layers
and represent themselves symmetric and antisymmetric com-
binations of single-layer orbitals, one has nearly equal prob-
abilities for intrasubband and intersubband scatterings owing
to w11�q��w22�q��w12�q�, provided that interlayer correla-
tion of the scattering potentials is weak. Therefore, � j j ��12
�2� and � j j

tr ��12
tr �2�tr, where � and �tr are the averaged

quantum lifetime and the transport time, respectively. In
these approximations, Eq. �7� is written in the simplest way
as follows:

�d��� � �d
�0�D�

2, D� = 1
2 �D1� + D2��, D j� = 2 Im Sj�,

�9�

where �d
�0�=��

2 	0, ��=e2ns /m�c is the Hall conductivity,
and 	0=m /e2�trns is the classical resistivity.

The function D�=1+�� is the dimensionless �i.e., normal-
ized to its zero-field value� density of states, containing an
oscillating �periodic in ��c� part ��. Therefore, it is conve-
nient to solve the kinetic equation by representing the distri-
bution function as a sum f�

0+�f�, where the first term slowly
varies on the scale of cyclotron energy, while the second one
rapidly oscillates.8 The first term satisfies the equation

�
�2

��2 f�
0 = − J��f0�, � =


�2j2	0

2m
. �10�

The solution of this equation can be satisfactory approxi-
mated by a heated Fermi distribution. This is always true if
the electron-electron scattering dominates over the electron-
phonon scattering and over the electric-field effect described
by the left-hand side of Eq. �10�. In this case, the Fermi
distribution of electrons is maintained against the field-
induced diffusion in the energy space, while the electron-
phonon scattering determines the effective electron tempera-
ture Te. In the general case, a numerical solution of Eq. �10�

involving electron-phonon scattering in the collision
integral13 confirms that f�

0 is very close to the heated Fermi
distribution. The electron temperature can be found from the
balance equation P= Pph, where Pph=−�d� �D�J��f� is the
power lost to the lattice vibrations �phonons�. The balance
equation is obtained by multiplying the kinetic equation �2�
by the density of states D� and energy � and integrating it
over �.

The equation for the oscillating part �f� is then written as

D�

�2

��2�f� + 2
�D�

��

�

��
�f� + �−1J���f� = − 2

�D�

��

� f�
0

��
.

�11�

Below, we search for the function �f� in the form �f�

= ��f�
0 /�����, where �� is a periodic function of energy. Tak-

ing into account that the main mechanism of relaxation of
the distribution �f� is the electron-electron scattering, one
may represent the linearized collision integral J���f� as

J���f� = −
1

�in

� f�
0

��

1

ND�
�

j j�j1j1�

Mjj�,j1j1�

D j�D j1�+��D j���D j1���−��

���� + ��� − ��+�� − ���−������,��,

N = �
j j�j1j1�

Mjj�,j1j1�
, �12�

where �� is the energy transferred in electron-electron colli-
sions, Mjj�,j1j1�

is the probability of scattering �when electrons
from the states j and j� come to the states j1 and j1��, N is the
normalization constant, and the angular brackets 
¯ ���,��

denote averaging over the energies �� and ��. Expression
�12� is a straightforward generalization of the result of Ref.
8. The characteristic inelastic-scattering time �in describes
the relaxation at low magnetic fields, when D j� are close to
unity. In this case the collision integral acquires the simplest
form J���f�=−�f� /�in, i.e., the relaxation time approxima-
tion is justified.

The resistivity 	d=�d
�0� /��

2 is written, according to Eq.
�1�, in the form

	d = 	0� d� D�
2�−

� f�
0

��
��1 +

���

��
� , �13�

where we have taken into account that �f� /�����f�
0 /����1

+��� /���. Therefore, in order to calculate the resistivity, one
should find �� by using Eqs. �11� and �12�. In general, Eq.
�11� is an integrodifferential equation that cannot be solved
analytically. However, the property of periodicity allows one
to expand �� in series of harmonics, ��

=�k�k exp�2
ik� /��c�, and represent Eq. �11� as a system
of linear equations

�Q−1 + k2��k + �
k�=−�

�

��2kk� − k�2��k−k� + Q−1Ckk���k�

= 2ik
��c

2

�k, �14�

where
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Q =
2
3j2

e2ns�c
2

�in

�tr
�15�

is a dimensionless parameter characterizing the nonlinear ef-
fect of the current on the transport. The matrix Ckk�, whose
explicit form is not shown here, describes the effects of
electron-electron scattering beyond the relaxation time ap-
proximation.

The harmonics of the density of states, �k, as well as the
coefficients Ckk�, which are expressed in terms of products of
these harmonics, are proportional to the Dingle factors exp�
−k
 /�c��. Therefore, searching for the coefficients �k at
weak enough magnetic fields, when e−
/�c� is small, one can
take into account only a single �k= �1� harmonic. Within
this accuracy, one should also neglect the sum in Eq. �14�.
This leads to a simple solution ��1= � i��1���c /
�Q / �1
+Q�. Since �+1+�−1=−2e−
/�c� cos�
�12 /��c�, Eq. �13� is
reduced to a simple analytical expression for the resistivity

	d

	0
= 1 + e−2
/�c�1 − 3Q

1 + Q
�1 + cos

2
�12

��c
�

− 4e−
/�c�T cos�2
�F

��c
�cos�
�12

��c
� . �16�

The second term in this expression, which is proportional to
e−2
/�c�, differs from a similar term of the single-subband
theory8 by the modulation factor �1+cos�2
�12 /��c�� /2 de-
scribing the MIS oscillations. The last term in Eq. �16� de-
scribes the SdHOs, which are thermally suppressed because
of the factor T= �2
2Te /��c� /sinh�2
2Te /��c�. The Fermi
energy �F is counted from the middle point between the sub-
bands, ��1+�2� /2, and, therefore, is directly proportional to
the total electron density, �F=�2
ns /2m.

IV. RESULTS AND DISCUSSION

A. MIS peak inversion and inelastic-scattering time

The basic features of our experimental findings can be
understood within Eq. �16�. In the linear regime, when the
parameter Q is small, this equation gives a good description
of the MIS oscillations experimentally investigated in Ref.
12. As the current increases, the amplitudes of the MIS peaks
decrease until the peak flip occurs. Then, the MIS oscilla-
tions become inverted and their amplitude grows again. In
contrast, the SdHO peaks are not affected by the current
directly, and their decrease is caused by the effect of heating.
The flip of the MIS oscillations corresponds to Q=1 /3.
Since Q is inversely proportional to the square of the mag-
netic field, there exists the inversion field Binv determined
from the equation Q=1 /3, where Q is given by Eq. �15�.
This feature is observed in our experiment �see the inset to
Fig. 2�. For sample B, we have extracted Binv for several
values of the current. The results are shown in Fig. 5. At 4.2
K the experimental points follow the linear Binv�I� depen-
dence predicted by Eq. �15�. The only unknown parameter in
the right-hand side of Eq. �15� is the inelastic relaxation time
�in. Since the ratio Binv / I is proportional to the square root of
�in, we are able to estimate this time from experimental data

as �in�64 ps at T=4.2 K. Assuming the T−2 scaling of this
time,8 one obtains � /�in=6.6 mK at T=1 K, which is not
far than the theoretical estimate � /�in=4 mK at T=1 K
based on the consideration of electron-electron scattering.8

The positions of experimental points at T=1.4 K also fit
within this picture if the electron heating is taken into ac-
count. The increase in electron temperature with increasing
current �this heating effect is calculated here by using the
collision integral for interaction of electrons with acoustic
phonons13,14� leads to a deviation of the Binv�I� dependence
from the linearity because of temperature dependence of �in.
This deviation is essential at T=1.4 K; see Fig. 5. The same
consideration, applied to the high-mobility sample A, gives
the inelastic-scattering time �in�108 ps at T=4.2 K, which
is very close to the theoretical estimate.

When the current becomes high enough �Q1�, Eq. �16�
predicts saturation of the resistance, when the amplitudes of
inverted MIS peaks are three times larger than the ampli-
tudes of the MIS peaks in the linear regime �Q�1�. We
indeed observe the regime resembling a saturation, with al-
most three times increase in the amplitudes of inverted peaks
for both samples at T=1.4 K �see Figs. 1 and 3�. For higher
temperatures, the behavior is similar, although the maximum
amplitudes of inverted peaks are only slightly larger than the
amplitudes in the linear regime. We explain this by the effect
of heating on the characteristic times. Although the resistiv-
ity in the high-current regime �Q1� no longer depends on
�in, there is a sizeable decrease in the quantum lifetime �
with increasing temperature,12 which takes place because the
electron-electron scattering contributes into �. As a result, the
Dingle factor decreases and the quantum contribution to the
resistance becomes smaller as the electrons are heated. At a
higher lattice temperature, when �in is smaller, the regime
Q1 requires higher currents. The corresponding increase in
heating15 reduces the quantum contribution, so the ampli-
tudes of inverted peaks never reach the theoretical limit and
are expected to decrease with increasing lattice temperature.
The slow suppression of the inverted peaks with further in-
crease in the current �see the inset to Fig. 3� is explained by
the same mechanism. This conclusion is supported by the

FIG. 5. �Color online� Dependence of the inversion field on the
current for sample B at T=4.2 K and T=1.4 K �points�. The
dashed lines correspond to a linear Binv�I� dependence assuming
�in=64 ps at 4.2 K �580 ps at 1.4 K�. The solid lines represent the
calculated Binv�I� dependence taking into account electron heating
by the current.
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experimental observation that the suppression is more effi-
cient at lower magnetic fields, when the Dingle factor exp�
−
 /�c�� is more sensitive to the temperature dependence of
quantum lifetime �. Theoretical calculations according to
Eqs. �15� and �16�, taking into account electron heating and
the corresponding changes in � and �in, demonstrate a rea-
sonable agreement with the experiment for different samples
and at different temperatures.

B. Origin of MIS peak splitting

The simple approach leading to Eqs. �15� and �16� fails to
describe an interesting feature observed in our experiment:
the current-induced splitting of the MIS oscillation peaks.
This nonlinear behavior is well reproducible; we see it in
different samples, and it was reported also by another
group.16 We have found that a possible explanation of this
feature can be based on the theory presented in Sec. III, if
higher harmonics of the distribution function �f� are taken
into account. In order to demonstrate this, we have carried
out a numerical solution of the system of equations �14�
under some simplifying assumptions about the collision in-
tegral. In the first case, we have assumed equal probabilities
for all possible electron-electron scattering processes, so the
matrix Mjj�,j1j1�

in Eq. �12� is replaced with a constant. An-
other limiting case is the complete neglect of intersubband
transitions in electron-electron collisions, when Mjj�,j1j1�
�� j j1

� j�j1�
. Then, the coefficients �k and Ckk� have been de-

termined by using the density of states numerically calcu-
lated within the SCBA; see Eq. �6�.

The results, corresponding to I=120 �A for sample B are
presented in Fig. 6. In the low-field region, where the MIS
peaks are inverted, the calculation shows a considerable in-
crease in their amplitudes above 0.2 T, where the contribu-
tion of higher harmonics of the density of states becomes
essential. This enhancement occurs because of the current-
induced mixing between different harmonics of the distribu-
tion function, formally coming from the term with �k−k� in
the sum in Eq. �14�. In contrast, in the linear regime the
SCBA magnetoresistance appears to be close to the magne-
toresistance calculated within the single-harmonic approxi-
mation �Eq. �16��. Above 0.27 T, when the Landau levels
become separated, one can see features associated with the
specific semielliptic shape of the SCBA density of states. In
the vicinity of the inversion field �Binv�0.4 T� the contri-
bution of the first harmonic of the distribution function is
suppressed �Q�1 /3� while the higher harmonics are still
active. This leads to two sets of MIS peaks because higher
harmonics of the density of states contain the factors
cos�k
�12 /��c� describing higher harmonics of the MIS os-
cillations.

Above the inversion field, the resistance is considerably
smaller than the resistance predicted by the single-harmonic
approximation, and a splitting of the MIS peaks occurs. The
splitting increases with the increase in the magnetic field.
These effects are caused by the contribution of higher har-
monics of the density of states in the collision integral. In-
deed, in the single-harmonic approximation the collision in-
tegral contains only the outcoming term proportional to ��.

This approximation becomes insufficient in higher magnetic
fields, when incoming terms in the collision integral �12� are
also important, so the relaxation of the distribution function,
which counteracts the diffusion of electrons in the energy
space, becomes less efficient. Therefore, the effect of the
current on the distribution function increases, and the resis-
tance is lowered. The described suppression of the collision-
integral term is more significant in the regions of the MIS
resonances, when �12 /�� is an integer, because the peaks of
the density of states are the narrowest in these conditions,
and the energies transferred in the electron-electron colli-
sions, ��, are small. Away from the MIS resonances, the
energy space for electron-electron scattering increases, espe-
cially when the intersubband transitions are allowed �see plot
2 in Fig. 6�. Therefore, the relaxation is less suppressed as
compared to the center of the MIS peak, and the effect of the
current is weaker. This consideration explains why the cen-
ters of the MIS peaks drop down, so the peak splitting takes
place.

The SCBA has a limited applicability for the description
of the density of electron states in the magnetic field. In
particular, it leads to nonphysically sharp edges of the den-
sity of states, which generate the harmonics �k with large k
in Eq. �14�. This apparently leads to an overestimation of the
effect of the current on the resistance in the region where the
MIS peaks are inverted �see Fig. 6�. To avoid such singulari-
ties, and to have a further insight into the problem of non-
linear magnetoresistance, we have considered the expression

FIG. 6. �Color online� �a� Calculated magnetoresistance of
sample B at T=4.2 K and I=120 �A. Plot 1 corresponds to simple
theory �Eq. �16��, while the others represent the results of numerical
solution of Eq. �14� for the cases of subband-independent electron-
electron scattering �2� and only intrasubband electron-electron scat-
tering �3�. �b� The same plots, where the SdHO contribution is
excluded. The density of states is found within the SCBA.
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��c

	
���c�
�

n=−�

�

exp�−
�� � �12/2 − ��c�n + 1/2��2

�2��c�
� ,

�17�

which corresponds to the Gaussian model for the density of
states and describes two independent sets of Landau-level
peaks from each subband �strictly speaking, the Landau-level
peaks are not independent because of elastic intersubband
scattering, as follows from Eq. �5�; see more details in Ref.
17�. The magnetic-field dependence of the broadening en-
ergy � has been set to make the first �proportional to
cos�2
� /��c�� harmonics of D j�

�G� and D j� equal. The results
of the calculations using D j�

�G� instead of the SCBA density of
states are shown in Fig. 7. The magnetoresistance in the re-
gion of inversion appears to be nearly the same as predicted
by the simple single-harmonic theory. In the region above the
inversion field, the splitting of the MIS peaks does not take
place if the intersubband electron-electron scattering is for-
bidden. This is understandable from the discussion given
above: if different subbands contribute into the density of
states independently, the efficiency of electron-electron col-
lisions does not depend on the ratio �12 /�� and the reduc-
tion in the collision integral owing to incoming terms causes
just a uniform suppression of the whole MIS peak. In the
SCBA, when the shape of D j� depends on this ratio, the
splitting of the MIS peaks does not necessarily require the
intersubband electron-electron scattering.

If the intersubband electron-electron scattering is allowed,
the magnetoresistance pictures obtained within the Gaussian
model, as well as within the SCBA model above the inver-
sion point, qualitatively reproduce the features we observe
experimentally in both our samples. For sample A, we have

put experimental and theoretical plots together in Fig. 8.
Apart from a weak negative magnetoresistance at low fields
and a slight decrease in the MIS oscillation frequency with
increasing B �the features we see in all our samples12,18 both
in linear and nonlinear regimes�, the agreement between ex-
periment and theory is good.

V. CONCLUSIONS

The nonlinear behavior of magnetoresistance of 2D elec-
tron systems with increasing electric current is determined
by such factors as Landau quantization, elastic and inelastic
scatterings of electrons, and acceleration of electrons by the
applied electric field. The theory,8–10 which takes these fac-
tors into account, describes the observed resistance
decrease5,6 in terms of inversion of the quantum �i.e., asso-
ciated with oscillating density of electron states� contribution
to resistivity. The experimental studies5,6 have verified differ-
ent aspects of the theory, in particular, the role of inelastic-
scattering time and quantum lifetime of electrons and the
dependence of these characteristic times on the temperature
and the magnetic field.

In two-subband systems such as DQWs, the quantum con-
tribution to resistivity is modulated by the magnetointersub-
band �MIS� oscillations. This property opens ways for study-
ing nonlinear response of 2D electron systems in magnetic
fields. In our experiments, we have found that the current-
induced inversion of the magnetoresistance shows up in
DQWs as a flip of the MIS oscillation pattern, resembling the
effect of the low-frequency microwave radiation.18 To sup-
port this observation, we have developed a theory of nonlin-
ear magnetoresistance in two-subband systems. Under rea-
sonable approximations, the magnetoresistance is described
by a simple expression �16�. The theory suggests that the
magnetic field Binv corresponding to the inversion of the
quantum contribution linearly depends on the current and is
proportional to the square root of the inelastic-scattering time
�in. Since in DQWs we determine Binv directly, by the posi-

FIG. 7. �Color online� The same as in Fig. 6 for the Gaussian
model of the density of states.

FIG. 8. �Color online� Comparison of the measured and the
calculated nonlinear magnetoresistance in sample A at T=4.2 K
and I=75 �A. The Gaussian model of the density of states and the
assumption of subband-independent electron-electron scattering are
used in the calculations.
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tion of the flip point in the magnetoresistance, we have veri-
fied these theoretical predictions in detail. The inelastic-
scattering time and its temperature dependence, found in this
way, are in agreement with theoretical estimates. Another
prediction of the theory, the saturation of the inverted quan-
tum contribution to resistivity at high current density, is also
verified. In the saturation regime, the decrease in the quan-
tum lifetime of electrons due to heating leads to a decrease in
the inverted MIS peaks amplitudes with increasing current.

Apart from this, we have observed a splitting of the MIS
oscillation peaks, which is sensitive to the current and occurs
at the fields above the inversion point, where the quantum
contribution to resistivity is positive. This phenomenon has
no analog in single-subband 2D systems. It cannot be ex-
plained within the approach accounting only for the first os-
cillatory harmonic of the nonequilibrium distribution func-
tion and leading to magnetoresistance �16�. We have given a
theoretical explanation of the peak splitting based on the
modification of inelastic scattering owing to the Landau
quantization. The key point of our theory is a suppression of
inelastic relaxation due to narrowing of energy space for

electron-electron scattering in the region of MIS resonances.
The quantitative description of this effect required a detailed
numerical analysis including consideration of higher har-
monics of both the density of states and the distribution func-
tion.

In summary, we have carried out both experimental and
theoretical studies of nonlinear magnetoresistance in two-
subband electron systems formed in double quantum wells
and obtained a good agreement between experimental and
theoretical results. The basic principles of the nonlinear
transport theory developed previously for single-subband
systems can be applied to the case of two subbands. How-
ever, the understanding of the phenomena observed in double
quantum wells has required consideration of specific features
of the density of states and scattering mechanisms in these
systems.
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